Effective Approximation of Bandlimited Signals and Their Samples

Holger Boche1,2 and Ullrich J. Mönich1

1Technical University of Munich, Chair of Theoretical Information Technology
2Munich Center for Quantum Science and Technology (MCQST)

Motivation

Shannon’s sampling theorem links the continuous-time and discrete-time worlds.

- When applying sampling or interpolation, many properties and characteristics of the signal carry over from one domain into the other (e.g., energy in discrete-time = energy in continuous-time).
- We analyze if and how this transition affects the computability of the signal.
In many applications digital hardware is used (CPUs, FPGAs, etc.).

Computability of a signal is directly linked to the approximation with “simple” signals, where we have an “effective”/algorithmic control of the approximation error.

If a signal is not computable, we cannot control the approximation error.
Overview of the Results

We study bandlimited signals \(f \in \mathcal{B}_\pi^p \) with finite \(L^p \)-norm.

Computability continuous-time \(\Leftrightarrow \) computability discrete-time

<table>
<thead>
<tr>
<th>(p \in (1, \infty))</th>
<th>(p = 1) or (p = \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Correspondence</td>
<td>(\times) No correspondence</td>
</tr>
<tr>
<td>Algorithm: Shannon sampling series</td>
<td>No algorithm exists</td>
</tr>
<tr>
<td>Control of the approximation error</td>
<td>No control of the approximation error</td>
</tr>
</tbody>
</table>
Turing Machine:
Abstract device that manipulates symbols on a strip of tape according to certain rules.

- Turing machines are an idealized computing model.
- No limitations on computing time or memory, no computation errors.
- Although the concept is very simple, Turing machines are capable of simulating any given algorithm.

Turing machines are suited to study the limitations of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer, regardless how powerful it may be.

Notation

- c_0: space of all sequences that vanish at infinity
- $\ell^p(\mathbb{Z})$, $1 \leq p < \infty$: spaces of p-th power summable sequences $x = \{x(k)\}_{k \in \mathbb{Z}}$

 \[\|x\|_{\ell^p} = \left(\sum_{k=-\infty}^{\infty} |x(k)|^p \right)^{1/p} \]
- $L^p(\Omega)$, $1 \leq p < \infty$: space of all measurable, pth-power Lebesgue integrable functions on Ω

 \[\|f\|_p = \left(\int_{\Omega} |f(t)|^p \, dt \right)^{1/p} \]
- $L^\infty(\Omega)$: space of all functions for which the essential supremum norm $\| \cdot \|_\infty$ is finite
Bandlimited Functions

Definition (Bernstein Space)

Let \mathcal{B}_σ be the set of all entire functions f with the property that for all $\epsilon > 0$ there exists a constant $C(\epsilon)$ with $|f(z)| \leq C(\epsilon) \exp\left((\sigma + \epsilon)|z|\right)$ for all $z \in \mathbb{C}$.

The Bernstein space \mathcal{B}_σ^p consists of all functions in \mathcal{B}_σ, whose restriction to the real line is in $L^p(\mathbb{R})$, $1 \leq p \leq \infty$. The norm for \mathcal{B}_σ^p is given by the L^p-norm on the real line.

- A function in \mathcal{B}_σ^p is called bandlimited to σ.
- We have $\mathcal{B}_\sigma^p \subset \mathcal{B}_\sigma^r$ for all $1 \leq p \leq r \leq \infty$.
- $\mathcal{B}_\sigma^\infty_{,0}$: space of all functions in $\mathcal{B}_\sigma^\infty$ that vanish at infinity.
- \mathcal{B}_σ^2: space of bandlimited functions with finite energy.
A sequence of rational numbers \(\{ r_n \}_{n \in \mathbb{N}} \) is called **computable sequence** if there exist recursive functions \(a, b, s \) from \(\mathbb{N} \) to \(\mathbb{N} \) such that \(b(n) \neq 0 \) for all \(n \in \mathbb{N} \) and

\[
 r_n = (-1)^{s(n)} \frac{a(n)}{b(n)}, \quad n \in \mathbb{N}.
\]

- A **recursive function** is a function, mapping natural numbers into natural numbers, that is built of simple computable functions and recursions. Recursive functions are computable by a Turing machine.
Computable Real Numbers

First example of an effective approximation

A real number x is said to be computable if there exists a computable sequence of rational numbers $\{r_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi : \mathbb{N} \rightarrow \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$|x - r_n| < 2^{-M}$$

for all $n \geq \xi(M)$.

- \mathbb{R}_c: set of computable real numbers
- \mathbb{R}_c is a field, i.e., finite sums, differences, products, and quotients of computable numbers are computable.
- Commonly used constants like e and π are computable.
Computability in ℓ^p

Computability in Banach spaces: Effective approximation by “simple” elements

A sequence $x = \{x(k)\}_{k \in \mathbb{Z}}$ in ℓ^p, $p \in [1, \infty) \cap \mathbb{R}_c$, is called computable in ℓ^p if every number $x(k)$, $k \in \mathbb{Z}$, is computable and there exist a computable sequence $\{y_n\}_{n \in \mathbb{N}} \subset \ell^p$, where each y_n has only finitely many non-zero elements, all of which are computable as real numbers, and a recursive function $\xi : \mathbb{N} \to \mathbb{N}$, such that for all $M \in \mathbb{N}$ we have

$$\|x - y_n\|_{\ell^p} \leq 2^{-M}$$

for all $n \geq \xi(M)$.

• Effective approximation by simple / finite-length sequences
• \mathcal{C}_{ℓ^p}: set of all sequences that are computable in ℓ^p
• \mathcal{C}_{c_0}: set of all sequences that are computable in c_0
We call a function f **elementary computable** if there exists a natural number L and a sequence of computable numbers $\{\alpha_k\}_{k=-L}^L$ such that

$$f(t) = \sum_{k=-L}^{L} \alpha_k \frac{\sin(\pi(t-k))}{\pi(t-k)}.$$

- Every elementary computable function is **Turing computable**.
- For every elementary computable function f, the norm $\|f\|_{B_{\pi}^p}$ is **computable**.
A function in $f \in \mathcal{B}^p_\pi$, $1 \leq p < \infty$, is called computable in \mathcal{B}^p_π if there exists a computable sequence of elementary computable functions $\{f_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have
$$
\|f - f_n\|_p \leq 2^{-M}
$$
for all $n \geq \xi(M)$.

- \mathcal{CB}^p_π: set of all functions that are computable in \mathcal{B}^p_π.
- $\mathcal{CB}^\infty_\pi,0$: set of all functions that are computable in $\mathcal{B}^\infty_\pi,0$ (analog definition).
A function in $f \in \mathcal{B}_\pi^p$, $1 \leq p < \infty$, is called computable in \mathcal{B}_π^p if there exists a computable sequence of elementary computable functions $\{f_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi : \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$\|f - f_n\|_p \leq 2^{-M}$$

for all $n \geq \xi(M)$.

- \mathcal{CB}_π^p: set of all functions that are computable in \mathcal{B}_π^p.
- $\mathcal{CB}_\pi^{\infty,0}$: set of all functions that are computable in $\mathcal{B}_\pi^{\infty,0}$ (analog definition).

We can approximate every function $f \in \mathcal{CB}_\pi^p$ by an elementary computable function, where we have an effective control of the approximation error.
Computable Bandlimited Functions III

For \(f \in \mathcal{CB}_\pi^p \), \(p \in [1, \infty) \cap \mathbb{R}_c \) and all \(M \in \mathbb{N} \) we have

\[
\| f - f_n \|_\infty \leq (1 + \pi) \| f - f_n \|_p \leq \frac{1 + \pi}{2^M}
\]

for all \(n \geq \xi(M) \).

We can approximate any function \(f \in \mathcal{CB}_\pi^p \) by an elementary computable function, where we have an effective and uniform control of the approximation error.
Observation

Let \(f \in CB^p_{\pi}, \ p \in [1, \infty) \cap \mathbb{R}_c \), or \(f \in CB^\infty_{\pi,0} \). Then \(f|_Z = \{f(k)\}_{k \in \mathbb{N}} \) is a computable sequence of computable numbers. Further we have \(f|_Z \in C^{\ell p} \) if \(p \in [1, \infty) \cap \mathbb{R}_c \), and \(f|_Z \in Cc_0 \) if \(p = \infty \).

Continuous-time signal \(f \) computable \(\Rightarrow \) Discrete-time signal \(f|_Z \) computable
Two Questions

Given a computable discrete-time signal, is the corresponding continuous-time signal computable?

Question 1: Is there a simple necessary and sufficient condition for characterizing the computability of f?

Question 2: Is there a simple canonical algorithm to actually compute f from the samples $f|_Z$?
Given a computable discrete-time signal, is the corresponding continuous-time signal computable?

Question 1: Is there a simple necessary and sufficient condition for characterizing the computability of f?

Question 2: Is there a simple canonical algorithm to actually compute f from the samples $f|_{\mathbb{Z}}$?
Two Questions

Given a computable discrete-time signal, is the corresponding continuous-time signal computable?

Question 1:
Is there a simple necessary and sufficient condition for characterizing the computability of f?

Question 2:
Is there a simple canonical algorithm to actually compute f from the samples $f|_{\mathbb{Z}}$?
Two Questions

Given a computable discrete-time signal, is the corresponding continuous-time signal computable?

Continuous-time signal f computable × Discrete-time signal $f|_Z$ computable

Question 1:
Is there a simple necessary and sufficient condition for characterizing the computability of f?

Question 2:
Is there a simple canonical algorithm to actually compute f from the samples $f|_Z$?
A Necessary and Sufficient Condition

Theorem

Let $f \in \mathcal{B}_\pi^p$, $p \in (1, \infty) \cap \mathbb{R}_c$. Then we have $f \in \mathcal{CB}_\pi^p$ if and only if $f|_\mathbb{Z} \in \mathcal{C}_p$.

- For $p \in (1, \infty) \cap \mathbb{R}_c$, the computability of the discrete-time signal implies the computability of the continuous-time signal.
- This answers Question 1.
A Necessary and Sufficient Condition

Theorem

Let \(f \in \mathcal{B}_\pi^p, \ p \in (1, \infty) \cap \mathbb{R}_c \). Then we have \(f \in \mathcal{C}\mathcal{B}_\pi^p \) if and only if \(f|_\mathbb{Z} \in \mathcal{C}\ell^p \).

- For \(p \in (1, \infty) \cap \mathbb{R}_c \) we have: \(f \) computable \(\iff \) \(f|_\mathbb{Z} \) computable.

That is we have a correspondence between the computable discrete-time signals in \(\mathcal{C}\ell^p \) and the computable continuous-time signals in \(\mathcal{C}\mathcal{B}_\pi^p \).
For \(p = 1 \) we do not have the correspondence. There exist signals that are in \(\mathcal{C}\ell^1 \) (computable in discrete-time), where the corresponding continuous-time signal is not in \(\mathcal{C}\mathcal{B}_1^1_{\pi} \).

Example:

- \(f_1(t) = \sin(\pi t)/(\pi t), \ t \in \mathbb{R} \).
- \(f_1 \) is a function of exponential type at most \(\pi \) and we have \(f_1|_{\mathbb{Z}} \in \mathcal{C}\ell^1 \).
- However, \(f_1 \not\in \mathcal{C}\mathcal{B}_1^1_{\pi} \), because \(f_1 \not\in \mathcal{B}_1^1_{\pi} \).
No correspondence for $p = \infty$

For $p = \infty$ we also do not have the correspondence.

Theorem

There exists a $f_2 \in B_{\pi,0}^\infty$ such that $f_2|_\mathbb{Z} \in C_0$ and $f_2 \not\in CB_{\pi,0}^\infty$.

(We even have $f_2(t) \not\in C_c$ for all $t \in \mathbb{R}_c \setminus \mathbb{Z}$).
A Further Necessary and Sufficient Condition

Theorem

Let $f \in \mathcal{B}_p^\pi$, $p \in (1, \infty) \cap \mathbb{R}_c$. We have $f \in \mathcal{CB}_p^\pi$ if and only if

1. $f|_Z$ is a computable sequence of computable numbers,
2. $\|f|_Z\|_{\ell^p} \in \mathbb{R}_c$.

- We do not require that the sequence $f|_Z$ is computable in ℓ^p, but only that the number $\|f|_Z\|_{\ell^p}$ is computable.
An Answer to Question 2

Shannon sampling series

\[(S_N f)(t) = \sum_{k=-N}^{N} f(k) \frac{\sin(\pi(t - k))}{\pi(t - k)}, \quad t \in \mathbb{R}. \]

Theorem

Let \(p \in (1, \infty) \cap \mathbb{R}_c \) and \(f \in \mathcal{B}_\pi^p \). Then we have \(f \in \mathcal{CB}_\pi^p \) if and only if \(f|_\mathbb{Z} \) is a computable sequence of computable numbers and \(S_N f \) converges effectively to \(f \) in the \(L^p \)-norm as \(N \) tends to infinity.

- The Shannon sampling series provides a remarkably simple algorithm to construct a computable sequence of elementary computable functions in \(\mathcal{CB}_\pi^p \) that converges effectively to \(f \).
Behavior for \(p = 1 \) and \(p = \infty \)

- For \(p = 1 \) and \(p = \infty \) the Shannon sampling series cannot be used for this purpose.

Theorem

There exists a signal \(f_3 \in \mathcal{CB}^1_{\pi} \) such that \(S_1 f_3 \notin \mathcal{CB}^1_{\pi} \), because \(S_1 f_3 \notin B^1_{\pi} \).

Theorem

There exists a signal \(f_4 \in \mathcal{CB}^\infty_{\pi,0} \) such that \(\{S_N f_4\}_{N \in \mathbb{N}} \) does not converge effectively to \(f_4 \) in the \(L^\infty \)-norm.
Conclusions

• We studied the **effective** (i.e., computable) **approximation** of bandlimited signals (∴ algorithmic control of the approximation error).

• We gave a **necessary and sufficient condition** for computability.

• For $p \in (1, \infty) \cap \mathbb{R}_c$ we have:
 1) f computable $\iff f|_{\mathbb{Z}}$ computable,
 2) Shannon sampling series provides a simple algorithm for the effective approximation of f.

• For $p = 1$ and $p = \infty$ we have no correspondence.
Thank you!